
An Efficient Service Function Chain Placement
Algorithm in a MEC-NFV Environment

Meng Wang†, Bo Cheng†∗, Wendi Feng†§, Junliang Chen†
†State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications, Beijing, P.R. China
§Department of Computer Science and Engineering, University of Minnesota, Minneapolis, USA

{mengwang, chengbo, logan, chjl}@bupt.edu.cn

Abstract—Mobile Edge Computing (MEC) is a promising
network architecture that pushes network control and mobile
computing to the network edge. Recent studies propose to deploy
MEC applications in the Network Function Virtualization (NFV)
environment. The mobile network service in NFV is deployed as
a Service Function Chains (SFC). In this paper, we solve the SFC
placement problem in a MEC-NFV environment. We formulate
the SFC placement problem as a weighted graph matching
problem, including two sub-problems: a graph matching problem
and a SFC mapping problem. To efficiently solve the graph
matching problem, we propose a linear programming-based
approach to calculate the similarity between physical nodes
and VNFs. Based on the similarity, we design a Hungarian-
based placement algorithm to solve the SFC mapping problem.
Evaluation results show that our proposed solutions outperform
the greedy algorithm in terms of execution time and resource
utilization.

Index Terms—Service Function Chain, Placement, Mobile
Edge Computing, Network Function Virtualization, Linear Pro-
gramming

I. INTRODUCTION

With the advent of 5G and IoT, mobile applications with
extreme requirements are increasing. Mobile Edge Computing
(MEC) [1] and Network Function Virtualization (NFV) [2]
are two emerging technologies to satisfy the mobile network
service requests. Fig. 1 shows a MEC-NFV environment. In
this figure, the network is considered as a three-layer architec-
ture consisting of core level, edge level, and user level. The
main idea of MEC is to push computing, network and storage
functions to network edges (e.g., base stations, access points,
and edge servers) to enable a good performance of latency
intensive and computation critical network applications at the
resource-limited edge devices [3].

NFV is a new network architecture that decouples network
functions from the hardware. Due to the convenient and flex-
ible management of Virtual Network Functions (VNFs), NFV
significantly reduces the Capital Expenditure (CAPEX) and
Operating Expense (OPEX) [4] and plays an important role in
communication networks, such as mobile networks, enterprise
networks, data center networks, and mobile edge networks.
ETSI defines the network service request graphs as VNF
Forwarding Graphs (VNF-FGs) [5]. Based on the network

∗Bo Cheng is the corresponding author.

Core
Edge

User
VNF2

Camera

Sensor
Laptop

Mobile Phone

AR/VR
Vehicles

VNF1 VNF3

Fig. 1. SFC Placement in a MEC-NFV Environment.

service requests, the NFV chain is described as a Service
Function Chain (SFC) consisting of an ordered set of VNFs.
The traffic in SFC is forwarded and controlled by the SDN
controller [6]. Different from the SFC placement problem
in traditional networks, mobile network services run at the
resource-limited edge devices. Therefore, the SFC placement
problem, which aims at optimizing resource utilization in a
MEC-NFV environment, becomes a critical research issue.

Fig. 1 shows the SFC placement problem in a MEC-
NFV environment. The SFC placement problem has received
increasing attention [7]–[13]. Most of the existing works
propose heuristic algorithms to solve the problem. However,
these heuristic algorithms require long execution time and can
only find a suboptimal result.

Given these facts, in this paper, we formulate the SFC
request and the physical network as two weighted graphs.
Thus, the SFC placement problem can be reformulated as an
optimal matching problem that aims to minimize the distance
between the adjacency matrices of two weighted graphs. Then
we extend the Weighted Graph Matching Problem (WGMP)
[14] for solving the optimal matching problem. The problem
is divided into two sub-problems: a graph matching problem
and a SFC mapping problem. To efficiently solve the two
sub-problems, we propose a Linear Programming (LP)-based
approach and a Hungarian-based algorithm. To the best of our
knowledge, our work presents the first study that uses LP to
solve the SFC placement problem aiming at minimizing the
resource utilization while reducing the execution time.

In summary, the main contributions of this paper are sum-
marized as follows:

• We formulate the physical network and SFC request as
two weighted graphs and formulate the SFC placement
problem in the MEC-NFV environment as the WGMP
consisting of graph matching and SFC mapping.

• We propose an LP-based approach and a Hungarian-
based algorithm to solve the graph matching and SFC
mapping in the WGMP. Our proposed solutions can run
in polynomial time and optimize the resource utilization.

• We evaluate the performance of our proposed solutions.
Evaluation results show our proposed solutions outper-
form the greedy algorithm in terms of execution time
and resource utilization.

The rest of this paper is organized as follows. Section II
discusses the related works. Section III formulates the SFC
placement problem in the MEC-NFV environment. Section
IV details the proposed solutions. Section V evaluates the
performance. Finally, Section VI concludes this paper.

II. RELATED WORKS

The SFC placement problem has been widely studied in
MEC. Jemaa et. al. [7] introduce VNF placement and opti-
mization strategies to optimize resource utilization and prevent
cloudlet overload. Laghrissi et. al. [8] propose an enhanced
predictive placement algorithm for edge slicing in the edge
cloud environment. Yala et. al. [9] propose a formulation
of the VNF placement problem as an optimization problem
of two objectives, namely maximizing service availability
and minimizing access latency. And they propose a genetic
algorithm to solve this problem. Chen et. al. [10] propose a
metric that can better measure the condition of the physical
resources. Based on this metric, they design an algorithm that
can optimize resource utilization, running time and acceptance
rate. Li et. al. [11] design a particle swarm optimization
based edge server placement algorithm to reduce the energy
consumption in mobile edge computing. Cziva et. al. [12]
formulate the edge VNF placement problem and propose a
dynamic placement scheduler to minimize VNF migrations.
Song et. al. [13] propose a VNF resource allocation scheme
based on context-aware grouping technology to minimize the
delay of network services.

In summary, most of the existing works use heuristic
algorithms to solve the SFC placement problem in MEC. Our
work is different from the mentioned works since it divides
the placement problem into LP-based graph matching and
Hungarian-based SFC mapping. Our proposed solutions run
in polynomial time and optimize resource utilization.

III. PROBLEM FORMULATION

In this section, we formulate the SFC request and the phys-
ical network as two weighted graphs. Then we reformulate
the SFC placement problem as an optimal graph matching
problem. A summary of used notations is found in Table I.

A. Physical Network Graph (PNG)

We formulate the physical network as a graph P = (N,L),
that is, Physical Network Graph (PNG). N and L indicate the

TABLE I
BASIC NOTATIONS USED THROUGHOUT THIS PAPER.

Symbol Definition

PNG

N = {n1, n2 · · · } the set of physical nodes.

L = {lij · · · } the set of physical links.

ni, nj two physical nodes in physical network.

lij = (ni, nj) the physical link between ni and nj .

VNF-FG

V = {v1, v2 · · · } the set of VNFs.

E = {epq · · · } the set of logical links.

vp, vq two VNFs in forwarding graph.

epq = (vp, vq) the logical link between vp and vq .

Resource

Ccpu
ni

the CPU capacity of ni.

Cmem
ni

the memory capacity of ni.

Cbw
lij

the bandwidth capacity between ni and nj .

cpuvp the CPU consumption of vp.

memvp the memory consumption of vp.

bwepq the bandwidth consumption between vp and vq .

Variables

x
vp
ni

whether vp is mapped in ni.

y
epq
lij

whether epq is mapped in lij .

α, β, γ weights of cpu, memory, and bandwidth.

set of physical nodes and physical links, respectively. Ccpu
ni

and Cmem
ni

indicate the CPU and memory capacity of each
physical node ni ∈ N . Cbw

lij
indicates the bandwidth capacity

of each physical link lij ∈ L.

B. VNF-FG

The SFC request can be described as a VNF-FG F =
(V,E). V and E indicate the set of VNFs and logical links,
respectively. We use cpuvp and memvp to indicate the CPU
and memory consumption of VNF vp ∈ V . The bandwidth
consumption of each logical link is the bandwidths of VNF
flows passing through it. Therefore, we use bwepq to indicate
the requested bandwidth of logical link epq ∈ E.

C. Objectives

In this subsection, we use two binary variables xvpni and yepqlij
to indicate the mapping status:

xvpni
=

{
1 if vp is mapped inni
0 otherwise

(1)

y
epq
lij

=

{
1 if epq is mapped in lij
0 otherwise

(2)

We take CPU, memory and bandwidth constraints into
consideration. In detail, the resource requirements of all VNFs
mapped in the same physical node cannot exceed the resource

capacity of this physical node. Therefore, the CPU, memory,
and bandwidth constraints are:

U cpu
ni

=

∑
vp

cpuvp · x
vp
ni

Ccpu
ni

≤ 1 ∀ni ∈ N (3)

Umem
ni

=

∑
vp

memvp · x
vp
ni

Cmem
ni

≤ 1 ∀ni ∈ N (4)

U bw
lij =

∑
epq

bwepq · y
epq
lij

Cbw
lrij

≤ 1 ∀lij ∈ L (5)

Our goal is to optimize the resource utilization:

max

α∑
ni

Ucpu
ni∑

ni

x
vp
ni

+ β

∑
ni

Umem
ni∑

ni

x
vp
ni

+ γ

∑
lij

Ubw
lij∑

lij

y
epq
lij

s.t. Eq.3 to Eq.5.

(6)

We introduce the weights (α, β, and γ) to separate the
importance of CPU, memory, and bandwidth.

In this paper, we formulate the SFC placement problem as
a weighted graph matching problem aiming to minimize the
distance between two graphs. Matching similar nodes means
that resource utilization can be improved.

IV. PROPOSED SOLUTIONS

In this section, we divide the SFC placement problem into
graph matching and SFC mapping. Then we propose the LP-
based approach and a Hungarian-based algorithm to solve the
problem. While LP in Weighted Graph Matching Problem
(WGMP) [14] is an old idea, it has not been widely applied to
the SFC placement problem in the MEC-NFV environment.

A. Linear Programming in WGMP

The main idea of LP in WGMP is to minimize the distance
between two weighted graphs. However, it also presents some
limitations in the SFC placement problem.

1) WGMP requires two matching graphs of the same size.
However, PNG size is significantly larger than VNF-FG.

2) LP computes the similarity between node and VNF, not
applicable to multiple VNFs mapped in the same node.

3) The weight of node and VNF is similar but may not meet
the resource requirements.

Therefore, we extend VNF-FG to the same size as PNG,
with the expanded element values being zero. Besides, we
design a mapping algorithm based on the Hungarian method,
which can support multiple VNFs placed on the same node.
In this algorithm, we verify the resource requirements.

B. LP-based Graph Matching

1) Adjacency Matrix (Step 1): In Algorithm 1, we define
the physical network and SFC request as input. The output
is the similarity matrix. At Step 1, AP and AF indicate the
adjacency matrices of PNG and VNF-FG, respectively. We use
pii to indicate the CPU capacity of node ni. Note that we set a
certain ratio between CPU and memory so that the association

Algorithm 1: LP-based Graph Matching
Input: The physical network: P = (N,L);

The SFC request: F = (V,E);
Output: The similarity matrix: M;

1 Step1: Compute adjacency matrices AP and AF :

AP =

{
pii = Ccpu

ni

pij = Cbw
lij

AF =

{
fpp = cpuvp

fpq = bwepq

2 Step2: Compute matrix APF from AP and AF :

APF =

{AP − f11In} {−f21In} · · · {−fn1In}
{−f12In} {AP − f22In} · · · {−fn2In}

...
...

. . .
...

{−f1nIn} {−f2nIn} · · · {AP − hnnIn}

Where In is the identity matrix.

3 Step3: Use the Simplex method to solve the LP
problem in Eq. 14. The matrix B is define by:
bij =

{
1 for i = 1, 2, 3, · · · , n and j = i, i+ n, i+ 2n, · · · , i+ (n− 1)n

0 otherwise

4 Step4: Get the similarity matrix M from vector m;

between the adjacency matrix and memory can be established.
And we use pij to indicate the bandwidth capacity between
node ni and node nj (so is fii and fij). We use the Dijkstra
method to compute the weight between nodes (or VNFs) that
are not directly connected.

AF =

!"

 5 4 3

 4 3 7

 3 7 5

 7 0

 5 0

 4 0

 7 5 4

 0 0 0

 6 0

 0 0#
$%

AP =

!"

 3 5 5

 5 6 6

 5 6 5

 9 12

 6 7

 4 9

 9 6 4

12 7 9

 7 5

 5 8#
$%

(a) VNF Forwarding Graph (VNF-FG)

(b) Physical Network Graph (PNG)

4

4

5

6

4

6
7

5

5

5

6

3

5

7

6

8

3

Placement

a

d

b

c

2

5

3

4

1

5

3

5

Fig. 2. The Adjacency Matrices of a) VNF-FG and b) PNG.

As Fig. 2(a) shows, the adjacency matrix (4∗4) of VNF-FG
is in the red dotted line box. As Fig. 2(b) shows, the adjacency
matrix of PNG is a 5∗5 matrix AP . Thus, we extend VNF-FG
to a 5∗5 matrix AF (the newly added elements are all zeros).

2) Distance (Step 2): Based on [14], the distance between
PNG and VNF-FG can be defined as:

J(Φ) =

n∑
i=1

n∑
j=1

(p(ni, nj)− f(Φ(ni),Φ(nj)))
2 (7)

Where p(ni, nj) indicates the weight between node ni and
nj . Φ indicates the one-to-one correspondence between VNF
and node. For example, we assume that (Φ(ni),Φ(nj)) =
(vp, vq). Therefore, f(Φ(ni),Φ(nj)) is the weight between
VNF vp and vq .

The WGMP is aimed at minimizing the distance J(Φ).
Therefore, the matching problem can be reformulated as:

min
M

∥∥AP −MAFM
T
∥∥
1

(8)

Where AP and AF are the adjacency matrices of PNG and
VNF-FG, respectively. The permutation matrix M indicates
the mapping function Φ. Note that ||.|| is the L1 norm.

The WGMP in Eq. 8 is equivalent to Eq. 9:

min
M

∥∥APM
T −MTAF

∥∥
1

(9)

We define a n ∗ n matrix R:

R = APM
T −MTAF (10)

The matrices R = {rij} and M = {mij} can be partitioned
by columns:

V EC(R) = {r11, r21, · · · , r1n, r2n, · · · , rnn}T
V EC(MT) = {m11,m21, · · · ,m1n,m2n, · · · ,mnn}T

(11)
Therefore, the WGMP in Eq. 8 can be reformulated as:

min
M
‖V EC(R)‖1 = min

M

∥∥APFV EC(MT)
∥∥
1

(12)

Where APF is an n2 ∗n2 matrix derived from AP = {pij}
and AF = {fij}, which is described in Algorithm 1 (Step 2).

From Eq. 9 to Eq. 12, we can conclude that the matching
problem in Eq. 8 is equivalent to Eq. 13:

min
m
‖APFm‖1 m ≥ 0 (13)

Where m = V EC(MT) is an n2 ∗ 1 vector.
3) Linear Programming (Step 3): Finally, we reformulate

the minimization problem in Eq. 13 as an LP problem:

min
m,S,T

n2∑
i

Si + Ti

s.t. APFm+ S − T = 0
Bm = e

m ≥ 0, S ≥ 0, T ≥ 0

(14)

Where {Si} and {Ti} indicate two sets of real positive
decision variables. B is a 2n∗n2 matrix defined in Algorithm 1
(Step 3). B indicates the constraints that a permutation matrix
M needs to keep the sum of any rows or columns to be 1.

Therefore, we use the Simplex method (Step 3 in Algorithm
1) to solve the LP problem in Eq. 14.

4) Similarity Matrix (Step 4): From Step 3 in Algorithm
1, we compute the vector m. In this step, we can get
the similarity matrix M from vector m. As Fig. 3 shows,
the data in green dotted line box indicates the similarity
between VNFs and physical nodes. The rows and columns
of the similarity matrix M correspond to VNFs and physical
nodes, respectively. For example, m12 indicates the similarity
between VNF va and node n2.

Based on the highest similarity in Fig. 3, the optimal match
should be that va, vb, and vc are mapped to n3, n1, and n4,
respectively. And vd should be also mapped to n4. However,
n4 cannot satisfy the resource consumption of vc and vd (Ccpu

n1

M =

!"

 0.18 0.03 0.52

 0.29 0.09 0.12

 0.08 0.06 0.12

0.08 0.13

0.08 0.11

0.37 0.16

 0.04 0.12 0.15

 0.16 0.28 0.07

0.39 0.28

0.02 0.12 #
$%

Physical Node

VNF

n1 n2 n3 n4 n5

va

vb

vc

vd

Fig. 3. Similarity Matrix M.

= 7 while cpuvc = 5 and cpuvd = 6). Therefore, vd should be
mapped to n5 since the similarity between vd and n5 is the
next highest. Besides, we need to consider other constraints
such as memory and bandwidth.

Based on these facts, we design a Hungarian-based SFC
mapping algorithm that computes the mapping results to meet
the resource requirements.

C. Hungarian-based SFC Mapping

In this subsection, we describe the Hungarian-based SFC
mapping algorithm. We use the physical network, SFC re-
quest, and similarity matrix as input. The output of this
algorithm is the mapping result matrix.

Algorithm 2: Hungarian-based SFC Mapping
Input: The physical network: P = (N,L);

The SFC request: F = (V,E);
The permutation matrix: M;

Output: The mapping result matrix: Mres;
1 Initialize: find node = false;
2 foreach vp in V do
3 rowp = pth row in permutation matrix M;
4 find node = false;
5 while !find node do
6 i = the index of highest element value in rowp;
7 if Ccpu

ni
≥ cpuvp and Cmem

ni
≥ memvp then

8 if Cbw
l ≥ bwe, ∀ l, e ∈ (ni−1, ni) then

9 Update physical network status;
10 mpi = 1;
11 find node = true;
12 end
13 else
14 rowp[i] = -1;
15 end
16 end
17 else
18 rowp[i] = -1;
19 end
20 end
21 end
22 return Mres;

At line 1 of Algorithm 2, we define find node to indicate
that whether we find a node that can hold VNF. Then we
traverse all the VNFs to find nodes to hold them (line 2-21).

At line 3, we get the row in matrix M corresponding to this
VNF. At line 4, we set find node to false. Then, start find
one node until find node is true (line 5). At line 6, we get
the index of the highest element (the highest similarity). If
the largest value is at two or more places, we compare the
node utilization of the corresponding nodes. And we choose
the place with higher node utilization as the highest element.
After getting the highest element, we determine whether the
corresponding node can hold the VNF (line 7). At line 8,
we check whether the links between the previous node and
this node meet the link consumption. If all of the resources
meet the requirements, the network state is updated (line 9-
11). Otherwise, we set this highest value to -1 (line 14 and
18). Therefore, the VNF can find a node with the next highest
similarity value (line 6).

D. Complexity Analysis

In Algorithm 1, the complexity of Step1, Step 2 and Step
4 is O(|N|2), O(|N|4), O(|N|2), respectively. Note that the
Step 3 is implemented using a Simplex method but it has
shown acceptable performance in most practical applications.
Therefore, the time complexity of Algorithm 1 (except Step
3) is at the level of O(|N|4).

In Algorithm 2, the foreach (line 2) and while (line 5) run
|V| and |N| times, respectively. Therefore, the time complexity
of Algorithm 2 is at the level of O(|VN|).

E. Baseline

In this subsection, we propose a bipartite matching-based
greedy algorithm as a baseline to compare the performance
of our proposed solutions.

Algorithm 3: Greedy Algorithm
Input: The physical network: P = (N,L);

The SFC request: F = (V,E);
Output: The mapping result matrix: Mres;

1 Step1: Compute adjacency matrices AP and AF ;
2 Step2: Initialize the potential value and compute

bipartite matrix using AP and AF ;
3 Step3: Compute max matching with min cost;
4 Step4: Check node mapping:{

success, go to Step 5
fail, update the potential value and go to Step 3

5 Step5: Compute link path and check link mapping:{
success, mij = 1
fail, update the potential value and go to Step 3

First, we compute adjacency matrices for PNG and VNF-
FG (Step 1 of Algorithm 3). At Step 2, we initialize a potential
value and create the bipartite graph. At Step 3, we compute the
max matching with min cost. At Step 4, we check whether the
node can hold VNF. If it succeeds, go to Step 5. Otherwise,
update the potential value and return Step 3. Finally, we
compute the link path and check link mapping (Step 5). If it
succeeds, update the mapping result matrix. Otherwise, update
the potential value and return Step 3.

V. PERFORMANCE EVALUATION

A. Simulation Setup

In this simulation, we evaluate the performance using a
laptop of Windows 10 with 2.2 GHz Intel Core i5 processor
and 8 GB memory. We implement LP-based approach and
Greedy algorithm in Java based on Alevin [15], a widely used
simulation environment for NFV resource allocation.

We run each scenario 100 times, so the statistics are almost
unaffected by the accidental events. The GT-ITM [16] topol-
ogy generator in NS-2 [17] can randomly generate graphs. The
topology of VNF-FG is similar to the physical network since
it is used to describe a network forwarding graph. Therefore,
we use the GT-ITM tool to generate PNGs and VNF-FGs.
50% of the nodes (VNFs) are directly connected. We design
the parameters of PNG and VNF-FG by reference to the
simulation scenarios in the literature [18]. The parameters
used can be found in Table II.

TABLE II
PARAMETERS OF PNG AND VNF-FG.

Parameters PNG VNF-FG
Size N ∈ [100− 500] V ∈ [10− 50]

Node Ccpu
ni
∈ [50− 100] cpuvp ∈ [0− 20]

Link Cbw
lij
∈ [50− 100] bwepq ∈ [0− 20]

Connectivity θ = 0.5 θ = 0.5

B. Execution Time

a) Execution Time with Different VNF-FG Size. b) Execution Time with Different PNG Size.

100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

1000

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

25%~75%

1.5 IRQ

Median

Mean

Outlier

PNG size (#)

Proposed

Greedy

10 20 30 40 50
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

VNF-FG size (#)

E
x
ec

u
ti

o
n
 t

im
e

(m
s)

25%~75%

1.5 IRQ

Median

Mean

Outlier

Proposed

Greedy

Fig. 4. Execution Time with Different a) VNF-FG Size and b) PNG Size.

As Fig. 4(a) shows, we evaluate the execution time of LP
and Greedy with different VNF-FG size (PNG size is 100). We
can conclude that our proposed LP-based approach runs faster
than Greedy. Besides, the execution time of the LP-based
approach is independent of the VNF-FG size. In contrast, the
execution time of Greedy increases dramatically as the VNF-
FG size increases. Moreover, we can observe that there are
many outliers in Greedy, which means that sometimes Greedy
iterates many times.

As Fig. 4(b) shows, we can conclude that LP runs faster
than Greedy with different PNG size (VNF-FG size is 20).
We can also observe that the execution time of both LP
and Greedy increases as PNG size increases. However, the
execution time of LP increases slowly while Greedy is fast.

In conclusion, our proposed LP-based approach runs faster
than Greedy. And the execution time of LP is not affected by

the VNF-FG size since it is only affected by the size of the
physical network adjacency matrix. The execution time of LP
increases slowly as the PNG size increases.

C. Resource Utilization
For resource utilization, we use α, β, and γ to indicate the

weights of CPU, memory, and bandwidth, respectively. We
think that the three factors of CPU, memory, and bandwidth
are equally important, so we set α = β = γ.

In this paper, the node resource contains CPU and memory.
We set a certain ratio between CPU and memory, so CPU
and memory utilization are similar. Therefore, we use CPU
utilization to indicate node utilization.

a) Node Utilization. b) Link Utilization.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

10

20

30

40

50

60

N
o
d
e

u
ti

li
za

ti
o
n
 (

%
)

Number of VNF-FGs (#)

LP

Greedy

VNF-FG size = 10

PNG size = 100

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

5

10

15

20

VNF-FG size = 10

PNG size = 100

L
in

k
 u

ti
li

za
ti

o
n
 (

%
)

Number of VNF-FGs (#)

LP

Greedy

Fig. 5. a) Node Utilization and b) Link Utilization.

As Fig. 5(a) shows, we evaluate the node utilization with
different numbers of VNF-FGs (VNF-FG size is 10 and
PNG size is 100). We can observe that the node utilization
of both LP and Greedy increases as the number of VNF-
FGs increases. LP has a higher node utilization (56%) than
Greedy (44%). It means that the LP-based graph matching can
optimize the node utilization efficiently.

As Fig. 5(b) shows, the link utilization of LP-based ap-
proach (13%) is higher than Greedy (10%). We can observe
that the link utilization is low. It is because the communication
between two nodes may use several links, and the links used
by different nodes are likely to be non-coincident.

In summary, the resource utilization of both LP-based
approach and Greedy increases as the number of VNF-FGs
increases. Our proposed LP-based approach outperforms the
Greedy in resource utilization.

VI. CONCLUSION

This paper focuses on the SFC placement problem in a
MEC-NFV environment. Different from the existing works,
we formulate the problem as the WGMP. Then we divide the
WGMP into two sub-problems: a graph matching problem
and a SFC mapping problem. And we propose an LP-based
approach and a Hungarian-based algorithm to solve two sub-
problems. Evaluation results show that our proposed solutions
can efficiently reduce the execution time and optimize re-
source utilization.

In our future work, we consider the trade-off between
resource utilization and service performance (e.g. resilient
[19] and end-to-end service delay). And we also study the
relationship between resource utilization and the weight of
different factors (i.e. CPU, memory, and bandwidth).

ACKNOWLEDGMENT

This work was supported in part by the National
Key Research and Development Program of China (Grant
No.2017YFB1400603), in part by the Natural Science Foun-
dation of China (Grant No.61772479), and in part by
the BUPT Excellent Ph.D. Students Foundation (Grant
No.CX2019214).

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
“Mobile edge computing: A key technology towards 5G,
https://www.etsi.org/images/files/etsiwhitepapers/etsi wp11 mec
a key technology towards 5g.pdf,” 2015. ETSI.

[2] M. Chiosi, S. Wright, J. Erfanian, and B. Smith, “Network functions
virtualisation (NFV), http://portal.etsi.org/NFV/NFV White Paper.pdf,”
SDN and OpenFlow World Congress, 2012. ETSI, NFVGS.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys and Tutorials, vol. 19, pp. 2322–2358, 2017.

[4] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys and Tutorials,
vol. 18, pp. 236–262, 2016.

[5] E. G. N. 003, “Network functions virtualisation (NFV): Terminology
for main concepts in NFV, https://www.etsi.org/deliver/etsi gs/nfv/001
099/003/01.02.01 60/gs nfv003v010201p.pdf,” 2014. ETSI, NFVGS.

[6] Z. Guo, W. Chen, Y.-F. Liu, Y. Xu, and Z.-L. Zhang, “Joint switch up-
grade and controller deployment in hybrid software-defined networks,”
IEEE Journal on Selected Areas in Communications, vol. 37, pp. 1012–
1028, 2019.

[7] F. B. Jemaa, G. Pujolle, and M. Pariente, “QoS-aware VNF placement
optimization in edge-central carrier cloud architecture,” 2016 IEEE
Global Communications Conference (GLOBECOM), pp. 1–7, 2016.

[8] A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards edge
slicing: VNF placement algorithms for a dynamic and realistic edge
cloud environment,” 2017 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, 2017.

[9] L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and availability
drivenVNF placement in a MEC-NFV environment,” 2018 IEEE Global
Communications Conference (GLOBECOM), pp. 1–7, 2018.

[10] Z. Chen, S. Zhang, C. Wang, Z. Qian, M. Xiao, J. Wu, and I. Jawhar, “A
novel algorithm for NFV chain placement in edge computing environ-
ments,” 2018 IEEE Global Communications Conference (GLOBECOM),
pp. 1–6, 2018.

[11] Y. Li and S. Wang, “An energy-aware edge server placement algorithm
in mobile edge computing,” 2018 IEEE International Conference on
Edge Computing (EDGE), pp. 66–73, 2018.

[12] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal vNF placement at the network edge,” IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, pp. 693–701, 2018.

[13] S. Song, C. Lee, H. Cho, G. Lim, and J. Chung, “Clustered virtualized
network functions resource allocation based on context-aware grouping
in 5G edge networks,” IEEE Transactions on Mobile Computing, pp. 1–
1, 2019.

[14] H. A. Almohamad and S. O. Duffuaa, “A linear programming approach
for the weighted graph matching problem,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 15, pp. 522–525, 1993.

[15] J. Gil-Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, pp. 518–532, 2016.

[16] USC, “GT-ITM topology generator, https://www.isi.edu/nsnam/ns/
ns-topogen.html#gt-itm,” 2001. University of Southern California.

[17] USC, “The network simulator - ns-2, https://www.isi.edu/nsnam/ns/,”
2001. University of Southern California.

[18] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C.
M. B. Duarte, “Orchestrating virtualized network functions,” IEEE
Transactions on Network and Service Management, vol. 13, pp. 725–
739, 2016.

[19] Z. Guo, W. Feng, S. Liu, W. Jiang, Y. Xu, and Z.-L. Zhang, “Retroflow:
maintaining control resiliency and flow programmability for software-
defined wans,” in IWQoS, 2019.

