
Poster:A Linear Programming Approach
for SFC Placement in Mobile Edge Computing

Meng Wang, Bo Cheng∗, Junliang Chen
State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunications, Beijing, China
{mengwang,chengbo,chjl}@bupt.edu.cn

ABSTRACT
Mobile Edge Computing (MEC) is a promising architecture
where network services are deployed to the network edge.
Recent studies tend to deploy Network Function Virtualiza-
tion (NFV) services to MEC. Network services in NFV are
deployed as Service Function Chains (SFCs). In this paper, we
focus on the SFC placement problem in a MEC-NFV environ-
ment, which is different from the data center network. Firstly,
we formulate this problem as a weighted graph matching
problem consisting of graph matching and SFC mapping.
Then, we propose a linear programming-based approach
to match the edge network and SFC. Finally, we design a
Hungarian-based placement algorithm to map SFC in the
edge network. A heuristic-based greedy algorithm is also
designed to compare the performance. Evaluation results
show that our proposed solutions outperform the greedy
algorithm in terms of execution time.

CCS CONCEPTS
•Networks→Network resources allocation; •Human-
centered computing →Mobile computing.

KEYWORDS
SFC; Placement; MEC; NFV; Linear Programming
ACM Reference Format:
Meng Wang, Bo Cheng∗, Junliang Chen. 2019. Poster:A Linear Pro-
gramming Approach for SFC Placement in Mobile Edge Computing.
In The 25th Annual International Conference on Mobile Computing
and Networking (MobiCom ’19), October 21–25, 2019, Los Cabos, Mex-
ico. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3300061.3343394
∗Bo Cheng is the corresponding author.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6169-9/19/10.
https://doi.org/10.1145/3300061.3343394

1 INTRODUCTION
Driven by 5G communications, smart devices and IoT sen-
sors, applications with extreme requirements are increasing.
Mobile Edge Computing (MEC) and Network Function Vir-
tualization (NFV) are emerging as two core technologies to
satisfy the network service demands.
NFV is an emerging technology that decouples network

functions from the hardware. By bringing great convenience
and flexible provisioning of Virtual Network Function (VNF),
NFV significantly decreases the Capital Expenditure (CAPEX)
and Operating Expense (OPEX). Based on the application re-
quirements, the NFV chain is described as a Service Function
Chain (SFC), which consists of an ordered set of VNFs.
In this paper, we focus on the SFC placement problem

at edge servers. In MEC, the demands of SFC requests are
more complex and the edge network is dynamic. Therefore,
SFC placement problem in MEC becomes an important but
difficult problem, which has received increasing attention [3].
Most of the existing works propose heuristic algorithms to
solve the SFC placement problem inMEC. However, heuristic
approaches iteratively solve the problem and it can affect
the quality of the solutions and increase the time to find a
suboptimal solution.
Given these facts, we formulate the SFC placement prob-

lem in the MEC-NFV environment as the Weighted Graph
Matching Problem (WGMP) [2]. Then we propose a Linear
Programming (LP)-based approach to solve the WGMP.

In summary, the main contributions are as follows:
• Formulate the SFC placement problem as the WGMP,
and formulate the mobile edge network and SFC as
two weighted graphs.

• Propose an LP-based graph matching approach and
a Hungarian-based SFC mapping algorithm. Our pro-
posed solutions can run in polynomial time.

• Design a bipartite graph matching based greedy al-
gorithm as the baseline. And our proposed solutions
outperform the greedy algorithm.

The rest of this paper is organized as follows. Section 2
formulates the SFC placement problem. Section 3 discusses
the proposed solutions. Section 4 evaluates the performance.
Finally, Section 5 concludes this study.

https://doi.org/10.1145/3300061.3343394
https://doi.org/10.1145/3300061.3343394
https://doi.org/10.1145/3300061.3343394


2 PROBLEM FORMULATION
In this paper, we formulate the physical network and SFC
request as Physical Network Graph (PNG) and VNF Forward-
ing Graph (VNF-FG), respectively.
The physical network can be considered as a PNG P =

(N , L). N is the set of physical nodes and L is the set of
physical links between two physical nodes. Ccpu

ni and Cmem
ni

indicate the CPU and memory capacity of physical node ni ∈
N . Cbw

li j
is the bandwidth capacity of physical link li j ∈ L.

We formulate SFC request as a VNF-FG F = (V , E). V
indicates the set of VNFs and E indicates the set of logical
links between two VNFs. cpuvp andmemvp indicate the CPU
and memory consumption of VNF vp ∈ V . And bwepq is the
requested bandwidth of logical link epq ∈ E.

3 PROPOSED SOLUTIONS
In this section, we propose the LP-based approach and a
Hungarian-based algorithm to solve the WGMP. While LP
in WGMP [2] is an old idea, it has not been widely applied
to the SFC placement in MEC.

Algorithm 1: LP-based Graph Matching
Input: The physical network: P = (N , L);

The SFC request: F = (V , E);
1 Step1: Compute adjacency matrices AP and AF :

AP =

{
pii = C

cpu
ni

pi j = C
bw
li j

AF =

{
fpp = cpuvp

fpq = bwepq

2 Step2: Compute matrix APF from AP and AF :

APF =



{AP − f11In} {−f21In} · · · {−fn1In}

{−f12In} {AP − f22In} · · · {−fn2In}
...

...
. . .

...

{−f1nIn} {−f2nIn} · · · {AP − hnnIn}


3 Step3: Solve the LP problem in Eq. 4 by using the

Simplex method. The matrix B is define by:

bi j =

{
1 for i = 1, 2, 3, · · · ,n and j = i, i + n, i + 2n, · · · , i + (n − 1)n
0 otherwise

4 Step4: Get the similarity matrixM from vectorm
(generated at Step 3);

5 Step5: Map SFC by using the Hungarian-based
algorithm;

3.1 LP-based Graph Matching
3.1.1 Adjacency Matrix (Step 1). At Step 1, we use AP and
AF to indicate the adjacency matrices of PNG and VNF-FG.
pii indicates the CPU capacity of node ni . pi j indicates the
bandwidth capacity between node ni and nj (so is fii and
fi j ). We compute the weight between nodes (or VNFs) that
are not directly connected based on the Dijkstra method.

AF = 

 
!"

 2  4  4

 4  4  3

 4  3  3

 0  0

 0  0

 0  0

 0  0  0

 0  0  0

 0  0

 0  0#
$% 

1

5

3

41

2

2

AP = 

 
!"

 5  4  6

 4  6  6

 6  6 10

 9 12

 5  8

 8 13

 9  5  8

12  8 13

11  5

 5 12#
$% 

3

(a) VNF Forwarding Graph (VNF-FG)

(b) Physical Network Graph (PNG)

4

4

3

6

4

6

8

5 5

8

2

4

3

5

6

10

11

12

Placement

Figure 1: (a) VNF-FG; (b) PNG.

For example, PNG is a 5 ∗ 5 matrix AP , as shown in Figure
1(b). The adjacency matrix (3 ∗ 3) of VNF-FG is in the red
dotted line box, as shown in Figure 1(a). We extend it to a
5 ∗ 5 matrix AF (the newly added elements are all zeros).

3.1.2 Distance (Step 2). Based on [2], the distance between
PNG and VNF-FG can be defined as:

J (Φ) =
n∑
i=1

n∑
j=1

(p(ni ,nj ) − f (Φ(ni ),Φ(nj )))
2 (1)

Where p(ni ,nj ) indicates the weight between ni and nj . Φ
is the one-to-one correspondence between node and VNF.

The goal ofWGMP is to minimize the distance J (Φ). There-
fore, the matching problem can be defined as:

min
M



AP −MAFM
T



1 (2)

Where permutation matrixM indicates the mapping func-
tionΦ.AP andAF are the adjacencymatrices of twoweighted
graphs. Note that | |.| | is the L1 norm.
According to [2], we can conclude that the minimization

problem in Eq. 2 is equivalent to Eq. 3:

min
m

∥APFm∥1 m ≥ 0 (3)

Wherem = VEC(MT) indicates an n2 ∗ 1 vector.

3.1.3 Linear Programming (Step 3). Finally, we reformulate
the minimization problem in Eq. 3 as an LP problem:

min
m,S ,T

n2∑
i
Si +Ti

s .t . APFm + S −T = 0
Bm = e

m ≥ 0, S ≥ 0,T ≥ 0

(4)

Where {Si } and {Ti } are two sets of real positive decision
variables. B is a 2n ∗ n2 matrix defined in Algorithm 1 (Step
3). B indicates the constraints that a permutation matrixM
needs to keep the sum of any rows or columns to be 1.
Therefore, we solve the LP problem in Eq. 4 by using the

Simplex method (Step 3 in Algorithm 1).



M = 

 
!"

 0.49 0.01 0.02

 0.19 0.13 0.01

 0.02 0.01 0.21

0.04 0.33 

0.06 0.09 

0.17 0.06 

 0.07 0.42 0.19

 0.13 0.18 0.46

0.02 0.25 

0.08 0.02 #
$% 

Physical Node

VNF

n1      n2      n3      n4      n5 

v1

v2

v3

Figure 2: Similarity Matrix M.

3.1.4 Similarity Matrix (Step 4). At Step 4, we can get the
similarity matrixM from vectorm. As Figure 2 shows, data
in the green dotted line box indicates the similarity between
physical nodes and VNFs. The columns and rows ofM corre-
spond to physical nodes and VNFs, respectively. For example,
m12 indicates the similarity between VNF v1 and node n2.

3.1.5 Hungarian-based SFC Mapping (Step 5). At Step 5, we
design Hungarian-based algorithm to map SFC. According to
the highest similarity in Figure 2, the optimal match should
be that v1 and v2 are mapped to n1, and v3 is mapped to n3.
However, the resource capacity of n1 cannot satisfy v1 and v2
(Ccpun1 = 5 while cpuv1 = 2 and cpuv2 = 4). Therefore, v2 should
be mapped to n2 since the similarity between n2 and v2 is the
next highest. In addition, we take memory and bandwidth
constraints into consideration.

4 PERFORMANCE EVALUATION
4.1 Simulation Setup
We evaluate the performance using a laptop of Windows
10 with 2.2 GHz Intel Core i5 processor and 8 GB memory.
We implement our proposed LP-based approach and Greedy
algorithm in Java based on Alevin [4], a wider simulation
environment for NFV resource allocation.

Table 1: Parameters of PNG and VNF-FG.

Parameters PNG VNF-FG

Size N ∈ [100 − 500] V ∈ [10 − 50]

Node Resource C
cpu
ni ∈ [50 − 100] cpuvp ∈ [0 − 20]

Link Resource Cbw
li j

∈ [50 − 100] bwepq ∈ [0 − 20]

Connectivity α = 0.5 α = 0.5

We run each scenario 100 times, so the statistics are almost
unaffected by the accidental events. We use the GT-ITM [1]
topology generator in NS-2 to randomly generate PNGs and
VNF-FGs. 50% of the nodes (VNFs) are directly connected.
The parameters of PNG and VNF-FG used in the simulation
can be found in Table 1.

(a) Execution time with different VNF-FG size. (b) Execution time with different PNG size.

100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

1000

E
x
ec

u
ti

o
n
 t

im
e 

(m
s)

25%~75%

1.5 IRQ

Median

Mean

Outlier

PNG size (#)

Proposed

Greedy

VNF-FG size = 20

10 20 30 40 50
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

PNG size = 100

VNF-FG size (#)

E
x
ec

u
ti

o
n
 t

im
e 

(m
s)

25%~75%

1.5 IRQ

Median

Mean

Outlier

Proposed

Greedy

Figure 3: Execution Time.

4.2 Execution Time
As Figure 3(a) shows, we evaluate the execution time of LP
and Greedy with different VNF-FG size (PNG size is 100). It
is worth mentioning that the execution time of LP is inde-
pendent of the VNF-FG size. And we can conclude that LP
runs faster than Greedy.
Figure 3(b) shows the LP runs faster than Greedy with

different PNG size (VNF-FG size is 20). We can also observe
that the execution time of both LP and Greedy increases as
PNG size increases. And the execution time of LP increases
slowly while Greedy is fast.

5 CONCLUSION
In this paper, we formulate the SFC placement problem as
the WGMP. And we propose an LP-based approach and a
Hungarian-based algorithm to solve this problem. We also
design a heuristic-based greedy algorithm to compare the
performance. Evaluation results show that our proposed
solutions can efficiently reduce the execution time. In future
work, we focus on resource optimization in SFC placement.

6 ACKNOWLEDGMENTS
This work was supported in part by the BUPT Excellent
Ph.D. Students Foundation (Grant No.CX2019214), in part
by the National Key Research and Development Program
of China (Grant No.2017YFB1400603), and in part by the
Natural Science Foundation of China (Grant No.61772479).

REFERENCES
[1] [n.d.]. GT-ITM Topology Generator. https://www.isi.edu/nsnam/ns/ns-

topogen.html#gt-itm
[2] H. A. Almohamad and Salih O. Duffuaa. 1993. A Linear Programming

Approach for the Weighted Graph Matching Problem. IEEE Trans.
Pattern Anal. Mach. Intell. 15 (1993), 522–525.

[3] Richard Cziva, Christos Anagnostopoulos, and Dimitrios P. Pezaros.
2018. Dynamic, Latency-Optimal vNF Placement at the Network Edge.
IEEE INFOCOM 2018 - IEEE Conference on Computer Communications
(2018), 693–701.

[4] Juliver Gil-Herrera and Juan Felipe Botero. 2016. Resource Allocation
in NFV: A Comprehensive Survey. IEEE Transactions on Network and
Service Management 13 (2016), 518–532.

https://www.isi.edu/nsnam/ns/ns-topogen.html#gt-itm
https://www.isi.edu/nsnam/ns/ns-topogen.html#gt-itm

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Proposed Solutions
	3.1 LP-based Graph Matching

	4 Performance Evaluation
	4.1 Simulation Setup
	4.2 Execution Time

	5 Conclusion
	6 Acknowledgments
	References

