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Abstract—Network Function Virtualization (NFV) is a new
network paradigm that decouples network functions from
dedicated hardware. Network services in NFV are deployed
as service chains, also known as Service Function Chains
(SFCs). SFC consists of an ordered set of Virtual Network
Functions (VNFs). One of the main challenge when deploying
SFC is to efficiently make use of the resource. In this paper,
we focus on the SFC composition and mapping considering
resource optimization. We formulate the SFC composition and
mapping problem as a weighted graph matching problem. Then
we propose a Hungarian based algorithm to solve the SFC
composition and mapping problem in a coordinated way.
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I. INTRODUCTION

With the development of network services, enterprise net-
work nowadays is composed of multiple network functions
and how to deploy them in an efficient way becomes a
key challenge. Operators are bound by specific hardware
since the tightly coupled deployment of network functions
on the physical resource. Network Function Virtualization
(NFV) [1] is a novel network paradigm that decouples
network functions from the hardware. By allowing various
network functions to be virtualized, the Capital Expenditure
(CAPEX) and Operating Expense (OPEX) can be decreased
significantly [2]. Based on the requirements and dependen-
cies of network applications, network services are described
as service chains. The service chain, also known as Service
Function Chain (SFC), consists of an ordered set of Virtual
Network Functions (VNFs).

For SFC, it runs on physical nodes and consists of several
VNFs. One of the main challenges when deploying SFC
is resource optimization. This challenge is also known as
NFV resource allocation problem [3] consisting of three
subproblems: VNF chain composition, VNF forwarding
graph embedding and VNF scheduling. In this paper, the
SFC composition and mapping correspond to the VNF
chain composition and VNF forwarding graph embedding,
respectively. In detail, there are multiple requirements and
dependencies in a SFC Request (SFCR). Therefore, we need
to efficiently compose the SFCR as a request graph, also
known as the VNF Forwarding Graph (VNF-FG) [4]. After
the SFC composition, we get a suitable VNF-FG. Then, we

need to map this VNF-FG to the physical network. As VNF-
FG and physical network are dynamic, different mapping
methods can result in different resource consumption.

The requirements and dependencies of network appli-
cations complicate the deployment of SFC. In this paper,
we focus on the SFC composition and mapping problem,
which has received increasing attention from both academic
and industry. There are different kinds of SFC composition
and mapping algorithms in the existing works [5], [6], [7].
However, there are still some problems remaining to be
solved. Firstly, most of the existing works propose heuristic
algorithms to solve the SFC mapping problem. However,
heuristic approaches iteratively solve the problem and it
can affect the quality of the solutions and increase the
time to find a suboptimal solution. Secondly, more existing
works solve the SFC composition and mapping problem in
a separate way, resulting in low efficiency.

Given these facts, we optimize the SFC composition and
mapping problem. Firstly, we formulate this problem as a
Weighted Graph Matching Problem (WGMP). In detail, we
describe SFCR and physical network as VNF-FG and Physi-
cal Network Graph (PNG) and compute the similarity matrix
between them. Then we compute the dependency matrix
of VNFs. Based on the similarity matrix and dependency
matrix, we solve the SFC composition. And we propose a
Hungarian based algorithm to map SFC. In summary, the
main contributions are as follows:

• Formulate the SFC composition and mapping problem
as a WGMP. We use an eigendecomposition based
approach to compute the similarity matrix between
VNF-FG and PNG. Our proposed solutions can run in
polynomial time and optimize resource consumption.

• Propose a Hungarian based algorithm to solve the SFC
composition and mapping in a coordinated way. We
compute the dependencies between VNFs according to
the requirements and priorities in SFC. Based on the
similarity matrix and dependency matrix, we solve the
SFC composition and mapping problem.

The rest of this paper is organized as follows. Section II
discusses the related works. Section III describes and for-
mulates the problem. Section IV describes our preliminary
idea. Finally, Section V concludes this study.



II. RELATED WORKS

For resource allocation in NFV, Herrera et. al. [3] divide
the resource allocation problem into three subproblems:
VNF chain composition, VNF forwarding graph embedding
and VNF scheduling. The VNF chain composition and
VNF forwarding graph embedding correspond to the SFC
composition and mapping we are concerned with.

In [5], [7], authors solve the SFC composition and map-
ping problem in a coordinated way. However, most of these
approaches use heuristic algorithms to iteratively solve the
problem and increase the time to find a suboptimal solution.

Jemaa et. al. [6] propose an eigen based approach that can
efficiently solve the SFC mapping problem. However, they
do not take into account the SFC composition but instead
takes a predetermined VNF-FG as the input.

In summary, most of the existing works use heuristic algo-
rithms to solve the SFC composition and mapping problem.
In our previous work, we focus on the SFC composition
and mapping problem considering availability guarantee and
resource optimization.

In this paper, we optimize the SFC composition and
mapping problem in a novel way. We formulate this problem
as a WGMP and propose a Hungarian based algorithm to
optimize resource consumption.

III. PROBLEM STATEMENT

In this section, we describe the SFC composition and
mapping problem. Then, we formulate it as a WGMP.

A. Problem Description

1) SFC Composition: As Fig. 1(a) shows, R indicates the
relative flow ratio of two VNFs (e.g. R = 40% between VNF1

and VNF5). VNF1 (load balancer) divides data into two
streams. 60% of incoming traffic is forwarded to VNF4, and
40% to VNF5. The blue dotted line indicates network flow.
And the red dotted line indicates dependencies of VNFs. For
example, the red dotted line from VNF3 to VNF2, indicating
that VNF2 must be executed before VNF3.

As Fig. 1(b) shows, since there are no obvious dependen-
cies between some VNFs, SFCR can generate two different
VNF-FGs. For example, there is no qualitative requirement
for the order of VNF2 and VNF5.

Next, we define the relative data rate of VNF in a VNF-
FG. We assume that VNF1 executes video encoding function.
And VNF1 requires the processing capabilities of a 500 MHz
CPU to encode 100 MBit/s. Therefore, the relative data rate
of VNF1 is 500 * 100 = 50/Gbps and the total data rate is
D = 50/Gbps * 1Gbps = 50.

2) SFC Mapping: By calculating the total data rate of
each VNF, we can conclude that different VNF-FGs have
different total data rates. As Fig. 1(b) shows, the data rates
of VNF2 and VNF5 are different in the red dotted box.
Therefore, the optimal way is to map the VNF-FG with low
data rate to the physical network, as shown in Fig. 1(c).
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Figure 1. SFC Composition and Mapping in NFV-enabled Networks.

However, different mapping methods can lead to different
resource consumption. Therefore, we need to find a VNF-
FG with the lowest resource consumption and map it to the
physical network with an efficient mapping algorithm.

B. Problem Formulation

In this subsection, we formulate the SFC composition
and mapping problem in NFV-enabled networks. The used
notations can be found in Table I.

Table I
BASIC NOTATIONS IN THIS PAPER.

Symbol Definition

VNF-FG

V = {v1, v2 · · · } the set of VNFs.
E = {epq · · · } the set of logic links.
epq = (vp, vq) the logic link between vp and vq .

PNG

N = {n1, n2 · · · } the set of physical nodes.
L = {lij · · · } the set of physical links.
lij = (ni, nj) the physical link between ni and nj .

Resource

cpuvp ,memvp , bwepq the CPU, memory and bandwidth cost.
Ccpu

ni
, Cmem

ni
, Cbw

lij
the CPU, memory and bandwidth capacity.

Variables

αvp⊂ni whether vp is mapped in ni.
βepq⊂lij whether epq is mapped in lij .

1) VNF-FG: We define F = (V,E) as a VNF-FG in
SFC Request (SFCR). In this VNF-FG, V indicates the set
of VNFs and E indicates the set of logical links between
two VNFs. cpuvp and memvp indicate the CPU and memory
consumption of VNF vp ∈ V , respectively. In addition, we
define bwepq as the bandwidth consumption of logical link
epq ∈ E.



2) Physical Network Graph (PNG): The physical net-
work can be formulated as a bipartite graph P = (N,L). In
this paper, we name this graph as Physical Network Graph
(PNG). N and L are the set of physical nodes and physical
links, respectively. In addition, Ccpu

ni
and Cmem

ni
indicate the

CPU and memory capacity of each physical node ni ∈ N .
And we use Cbw

lij
to indicate the bandwidth capacity of

physical link lij ∈ L.
3) Objectives: In this subsection, we use binary variable

αvp⊂ni
to indicate the mapping status:

αvp⊂ni
=

{
1 if vp is mapped inni
0 otherwise

(1)

We take CPU, memory and bandwidth constraints into
consideration. In detail, the CPU consumption of all VNFs
placed in the same physical node cannot exceed the CPU ca-
pacity of this physical node. Therefore, the CPU constraints
can be formulated as:

|V |∑
p=1

cpuvp · αvp⊂ni ≤ Ccpu
ni

(2)

Similarly, the memory constraints are:

|V |∑
p=1

memvp · αvp⊂ni ≤ Cmem
ni

(3)

We use βepq⊂lij to describe whether logical link epq is
mapped in physical link lij :

βepq⊂lij =

{
1 if epq is mapped in lij
0 otherwise

(4)

Therefore, the bandwidth constraints are:
|V |∑
p=1

bwepq · βepq⊂lij ≤ Cbw
lij (5)

Our goal is to optimize the resource consumption:

min

|V |∑
p=1

(αvp⊂ni + βepq⊂lij )

s.t. Eq. 1 to Eq. 5.

(6)

Different from the traditional approaches, we formulate
SFC composition and mapping problem as a WGMP to
reduce resource consumption such as the used physical
nodes and physical links.

IV. PRELIMINARY IDEAS

In this section, we propose a preliminary idea based on
graph matching. While Weighted Graph Matching Problem
(WGMP) [8] is an old idea, it has not been widely used in the
SFC composition and mapping in NFV-enabled networks.

Firstly, we compute the adjacent matrices of VNF-FG
and PNG. Secondly, we use the eigendecomposition based

Algorithm 1: Preliminary Ideas
Input: The VNF-FG: F = (V,E);

The PNG: P = (N,L);
Output: The mapping result: Mres;

1 Step1: Compute adjacent matrices AF and AP :

AF =

{
fpp = cpuvp
fpq = bwepq

AP =

{
pii = Ccpu

ni

pij = Cbw
lij

2 Step2: Minimum the distance between VNF-FG and
PNG. Then, compute the eigen vectors.

3 Step3: Compute the similarity matrix and the
dependency matrix.

4 Step4: SFC composition based on the similarity
matrix and the dependency matrix. SFC mapping
based on Hungarian method.

approach to compute the similarity between the two graphs.
Thirdly, we get the similarity matrix and compute the de-
pendency matrix according to the priorities between VNFs.
Finally, we solve the SFC composition based on the sim-
ilarity matrix and dependency matrix. After generating an
optimal VNF-FG, we map it based on Hungarian method.

1) Adjacent Matrix (Step 1): At Step 1, AF and AP are
used to indicate the adjacent matrices of VNF-FG and PNG.
fpp indicates the CPU consumption of VNF vp. fpq indicates
the bandwidth consumption between VNF vp and vq (so is
pii and pij). We use Dijkstra method to compute the weight
between nodes (or VNFs) that are not directly connected.

AP = 

 

 
 

 3  5  5
 5  5  4
 5  4  4

 3  0
 7  0
 3  0

 3  7  3
 0  0  0

 6  0
 0  0 

 
 

 
b

4

1

3
2

5

AF = 

 

 
 

 7  6  9
 6  9 10
 9 10  6

 7 12
13  6
 5  8

 7 13  5
12  6  8

 6 13
13  8 

 
 

 

a

(a) VNF Forwarding Graph (VNF-FG)

(b) Physical Network Graph (PNG)

5

4

3

6

6

10

9

8

5

7

5

6

3

9

8

7

6

6

3

5
4

d

c

Figure 2. (a) VNF-FG; (b) PNG.

For example, as Fig. 2(a) shows, the adjacency matrix
(4 ∗ 4) of VNF-FG is in the red dotted line box. Since the
WGMP requires two weighted graphs with the same size, we
extend VNF-FG to a 5∗5 matrix (the newly added elements
are all zeros). In addition, PNG is a 5 ∗ 5 matrix, as shown
in Fig. 2(b).

2) Distance and Eigen Vectors (Step 2): The goal of
WGMP is to minimize the distance of VNF-FG and PNG.



Based on [8], the distance can be defined as:

J(Φ) =

n∑
i=1

n∑
j=1

(p(ni, nj)− f(Φ(ni),Φ(nj)))
2 (7)

Where p(ni, nj) indicates the weight between node ni
and nj . Φ indicates the one-to-one correspondence between
VNF and node. In detail, we assume that (Φ(ni),Φ(nj)) =
(vp, vq). Then, we can use f(Φ(ni),Φ(nj)) = f(vp, vq) to
indicate the weight between VNF vp and vq .

The goal of WGMP is to minimum the distance J(Φ).
Therefore, the matching problem can be reformulated as:

min
M

∥∥AP −MAFM
T
∥∥ (8)

Where permutation matrix M indicates the mapping func-
tion Φ. AF and AP are the adjacency matrices of two
weighted graphs.

According to [8], WGMP can be reformulated as:

tr(MTŪP Ū
T
F ) ≤ n (9)

Where ŪF and ŪP indicate the eigenvector matrices of
AF and AP , respectively.

3) Similarity Matrix and Dependency Matrix (Step 3):
According to Eq. 9, we can get the permutation matrix M :

M = ŪP Ū
T
F (10)

M = 
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Figure 3. (a) Similarity Matrix M; (b) Dependency Matrix D.

As Fig. 3(a) shows, data in green dotted line box repre-
sents the similarity between physical nodes and VNFs. For
example, m11 represents the similarity between n1 and v1.

As Fig. 3(b) shows, we compute a 4∗4 dependency matrix
based on the priorities between VNFs. We use dij = 1 indi-
cates that the execution order of VNFs is allowed (otherwise,

it is not allowed). For example, d12 = 1 indicates that VNFa

executed before VNFb is allowed.
4) SFC Composition and Mapping (Step 4): Based on the

similarity matrix and dependency matrix, we can compose
the SFC and get an optimal VNF-FG. Then we map this
VNF-FG to the physical network.

As Fig. 3(a) shows, the optimal match should be that v1
and v2 are mapped to n1, v3 is mapped to n3 and v4 is
mapped to n5. However, the resource capacity of n1 cannot
satisfy v1 and v2 (Ccpu

n1
= 7 while cpuv1 = 3 and cpuv2 = 5).

Therefore, v2 should be mapped to n2 since the similarity
between n2 and v2 is the next highest.

V. CONCLUSION

In this paper, we focus on SFC composition and mapping
considering resource optimization. We formulate the prob-
lem as a WGMP and propose a Hungarian based algorithm.
In future work, we further study resource optimization.
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